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ABSTRACT 

Accurate prognostic models and associated algorithms that 
are capable of predicting future component failure rates or 
performance degradation rates for shipboard propulsion 
systems are critical for optimizing the timing of recurring 
maintenance actions.  As part of the Naval maintenance 
philosophy on Condition Based Maintenance (CBM), 
prognostic algorithms are being developed for gas turbine 
applications that utilize state-of-the-art probabilistic modeling 
and analysis technologies.  Naval Surface Warfare Center, 
Carderock Division (NSWCCD) Code 9334 has continued 
interest in investigating methods for implementing CBM 
algorithms to modify gas turbine preventative maintenance in 
such areas as internal crank wash, fuel nozzles  and lube oil 
filter replacement. This paper will discuss a prognostic 
modeling approach developed for the LM2500 and Allison 
501-K17 gas turbines based on the combination of 
probabilistic analysis and fouling test results obtained from 
NSWCCD in Philadelphia.  In this application, the prognostic 
module is used to assess and predict compressor performance 
degradation rates due to salt deposit ingestion.  From this 
information, the optimum time for on-line waterwashing or 
crank washing from a cost/benefit standpoint is determined.   
  
NOMENCLATURE  
 
C, F – Normal Distributions 
N – Speed 
P – Pressure 
Q – Volumetric Flow 
S – Weighted Coefficients 
T – Temperature 
y - Predicted Value 
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CIT – Compressor Inlet Temperature 
CDT – Compressor Discharge Temperature 
CDP – Compressor Static Discharge Pressure 
CDPT – Compressor Discharge Total Pressure 
TIT – Turbine Inlet Temperature 
 
ΦΦΦΦ - Normalized Cumulative Distribution 
αααα - Weighting Factor 
γ γ γ γ  - ratio of Specific Heats 
σ − σ − σ − σ − Standard Deviations 
ττττ - Prediction Interval 
 
INTRODUCTION  

With a growing presence of gas turbine technologies, a 
stronger focus is being placed on trade-off analysis between 
performance optimization and Operational and Maintenance 
(O&M) costs.  As a result, cost/benefit evaluation of 
performance recovery methods has been at the forefront of 
these efforts.  In both the military and private sectors, reducing 
the extra costs encountered by degraded performance 
parameters such as fuel consumption or power loss, have 
prompted research into prognostic and diagnostic 
technologies.  Kurtz et al (2000) gives an excellent discussion 
of many performance degradation mechanisms; the majority of 
which are recoverable either through washing procedures, 
variable geometry adjustment or component replacement.  
However, optimization of both compressor crank and on-line 
washing intervals from the standpoints of fuel consumption 
and proactive maintenance is of primary interest to the US 
Navy and the focus of this paper. 
 The economic benefits associated with an optimized and 
condition-based on-line and off-line waterwash predictor are 
Copyright 2001 by ASME 
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significant.  Research by Haub et al (1990) showed that as 
much as 1188 Mw-hrs could be saved through the use of on-
line washing.  Additional savings of 450 MW-hrs was 
attributed to reduced maintenance costs and extended 
operating time between crank-washings. The study performed 
by Peltier et al (1995) showed that the use of on-line washing 
decreased average performance degradation from 1% per 100 
operating hours without on-line washing to 0.2% per 100 
operating hours with on-line washing.   
 An automated process is desired that is capable of 
detecting the severity of compressor fouling and relating that 
to the optimal time to perform maintenance based on O&M 
costs.  When a compressor undergoes fouling, several key 
performance factors are affected.  The most sensitive of these 
factors is the compressor capacity or referred mass flow Peltier 
et al (1995).   This is because loss of capacity comes from 
throat blockage and increases in roughness on the suction side 
of the blading.  Unfortunately, in most practical naval 
applications, compressor capacity is not reliably determinable.  
The compressor outlet temperature and discharge total 
pressure can typically be used to find compressor efficiency 
(Boyce 1995) however CDT, CDPT are not standard sensors in 
most Naval platforms.   
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Compressor fouling has also been shown to increase 

vibration, (Ozgur et al (2000) and Tsalavoutas et al) but there 
are many drawbacks to using this method to predict fouling 
severity. First is the complexity of separating out other modes 
that contribute to vibration increases and secondly is the poor 
reliability with which performance degradation severity may 
be assessed.  In lieu of these practical issues, a primary goal of 
this effort was to be capable of predicting the optimal time to 
waterwash or crankwash using only the most essential 
parameters that are currently available on most Naval 
installations.   Specifically, the developed technique utilizes 
available performance parameters such as fuel flow and CDP, 
relates them to performance degradation levels utilizing the 
prognostic model, and then predicts the optimal timing for 
cleaning procedures. 
 
ACCELERATED FOULING TESTING ON THE LM2500 AND 
ALLISON 501 
 The prognostic model was developed based on data from 
fouling tests taken at NSWCCD in Philadelphia, PA.  In order 
to simulate the amount of salt the typical Navy gas turbine is 
exposed to on a normal deployment, a 9% salt solution was 
injected into the engine intake. Over the course of the entire 
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test (3 days) approximately 0.0057m3 of salt was used to 
induce compressor degradation at four different load levels 
(1/3, 2/3, standard and full load levels or “bells”).  This 
method of testing was performed on both Allison 501 and 
LM2500 Units.  Figure 1 shows a borescope image of the salt 
deposits on the LM2500 1st stage blading.  
 

 
 

Figure 1 – Borescopic Image of Salt Deposits on 1st Stage 
Blading 

 
In addition to fouling the two engines, testing was also 

performed on the effects of on-line washing for the Allison 
501. The machine was crank washed and fouling was 
reinitiated. Specifically, at approximately 2% CDP drops, an 
on-line waterwash was performed using detergent. This cycle 
was completed 4 times at four different load levels.   
 During the testing, several of the critical parameters were 
monitored and their response to degradation was tended. Table 
1 contains the measured parameters with their units and ranges 
(Shaft RPM and Ngg are for the LM2500 testing only) 
 

 
Table 1 – Recorded Parameters from the DCS 

 
This list is much smaller than the Required Instrumentation 

List for performance testing proposed by Kurz et al (1999), it 
represents a much more realistic view of what instrumentation 
is actually installed on Naval platforms with the exception of 
CDT. However, through the use of experienced-based 
correlations, compressor degradation can still be accurately 
monitored.  This reduced list emphasizes how the methods 
described in the next section can bypass the need to know all 
the state variables at all the key gas turbine stations and still be 
able to track important performance parameters and their 
trends.  The focus is to generate reliable indicators of 
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compressor fouling not necessarily standard thermodynamics 
features. 
 
DEGRADATION FEATURES 
 Before any performance features was generated the test 
data was referred (corrected) to standard day conditions to 
account for the changing environmental conditions that 
occurred over the three days of testing.  In addition, due to 
difficulties in holding water brake load constant in the 
LM2500 test, corrections were also made for speed variations 
at the various load levels as well. Therefore, correction curves 
were developed for Qfuel vs. Nshaft, CDT vs. Nshaft and CDP vs. 
Nshaft to compensate for the fluctuations encountered during 
testing.  
 As previously stated, the best features for identifying 
compressor degradation would be compressor capacity and 
total pressure ratio changes.  The latter feature not only 
accounts for changes in static pressure drop but also losses in 
axial velocity due to wake losses and blade exit angle 
distortions.  With total pressure measurements absent there is 
not enough information to calculate compressor adiabatic 
efficiency in its strict form (as was shown in eq.1).  
 Alternately, Eq.2  may be used whose components are 
shown in Figure 2.   
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where:  h = Cp(∆T) 
 

 
 

Figure 2 – H-S Diagram 
 

With the knowledge of inlet mass flow (and hence 
velocity) at various load levels and associated bleeds (for an 
unfouled compressor) obtained from experience, an pseudo-
efficiency feature may be calculated which cannot account for 
axial velocity changes.  However, this feature was acceptable 
considering the degradation feature of interest is the percent 
change in performance.  It should be noted that the Navy 
intends to place total/static pressure probes on certain K-17s 
and LM-2500’s to improve the accuracy of these fouling 
features and performance assessment capabilities.   
 Figure 3 shows the pseudo-efficiency as compared to an 
unfouled state for the 501–K17 test.  Four waterwash events 
3

occur in this data set.  It is important to note the trend in non-
recoverable losses that will require a compressor crank wash, 
or more detailed overall, to recover. 
 

 
Figure 3 – Fouling / Waterwash Test Results 

 
In addition to this feature, it was found that at higher loads 

Static Pressure Ratio, CDT and Fuel Flow were all major 
indicators of degradation due to fouling. The increase in CDT 
was relatively minor and even risks overlapping thermocouple 
sensitivity.  These results from the LM2500 test are shown in 
Fig. 4. 
 

 
 

Figure 4 – Parameter Deviation at Full Load 
 (LM2500 Test) 

 
PROGNOSTIC MODEL FOR PREDICTING DEGRADATION 
 The compressor performance prognostic module consists 
of a data preprocessor and specific diagnostic/prognostic 
algorithms for assessing the current and future conditions of 
the gas turbine. The data preprocessor algorithms examine the 
unit’s operating data and automatically calculate key corrected 
performance parameters such as pressure ratios and 
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efficiencies at specific load levels in the fashion already 
described.  As fouling starts to occur in service, probabilistic 
classifiers match up corresponding parameter shifts to fouling 
severity levels attained from these tests with corresponding 
degrees of confidence. 
 A probabilistic-based technique has been developed that 
utilizes the known information on how measured parameters 
degrade over time to assess the current severity of parameter 
distribution shifts and project their future state (see Fig. 5).   
The parameter space is populated by two main components.  
These are the current condition and the expected degradation 
path.  Both are multi-variate Probability Density Function 
(PDFs) or 3-D statistical distributions.  Fig. 5 shows a top 
view of these distributions.  The highest degree of overlap 
between the expected degradation path and the current 
condition is the most likely level of compressor fouling.   
 In general, the probability that the current condition (C), 
may be attributed to a given fault (F) is determined by their 
joint probability density function.  If C and F can be assumed 
to be normally distributed, the probability of association (Pa) 
can be found using: 
 

)(2)(2
22

β
σσ

−Φ=
+

−−Φ=
cf

a
CFp  (3) 

 
where: 
 

CF ,  = the mean of the distributions F and C respectively 

cf σσ ,  = the standard deviation of the F and C distributions 
 

The function Φ( ) is the standard normal cumulative 
distribution.  The notation β is defined as the fault index.  
 Once the current severity level is known with a high degree 
of confidence, a fault-weighted projection is performed using a 
modified double-exponential smoothing technique. This 
approach is a better that a simple multi-variate regression 
because it weights the most recent performance degradation 
trends and evolve the current conditions toward the expected 
degradation path.  
 

 
Figure 5 – Prognostic Modeling Approach 
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To manipulate the data into the form of this model, the 

time dependency of the test results had to be removed because 
of the unrealistic fouling rates. This was performed by viewing 
percent changes in static pressure ratio, fuel flow and CDT in 
relation to ¼ % pseudo-efficiency drops. This increment was 
chosen because it was the highest resolution that still permitted 
statistical analysis. With the assimilation of the data into these 
discrete bands, the statistical parameters (e.g., mean and 
standard deviation) can be ascertained for use in the prognostic 
model. 
 Figure 6 shows the evolution of the compressor 
degradation for the LM-2500 test at 1% pseudo-efficiency 
drops (for visual clarity).  The top two plots show the 
distributions of pressure ratio and fuel flow respectively while 
the bottom two illustrate the joint probability distributions.  
 

 
Figure 6 – Prognostic Model Visualization 

 
Once the statistical performance degradation path is 

realized along with the capability to assess current degradation 
severity, the final step was to implement the predictive 
capability.  
 All compressors will not foul in exactly the same way and 
certainly not at the same rate as the accelerated tests.  Fouling 
rates may even change between waterwashes or crankwashes 
for a given compressor.  However, the percent changes of 
parameters relative to each other is still information that 
should be accounted for when projections of future fouling 
severity are to be made.   The actual unit-specific fouling rate 
is combined with historical fouling rates with a double 
exponential smoothing method. This time series technique 
weights the two most recent data points over past observations.  
Eq. 3a,b, and c, give the general formulation, Bowerman 
(1993).  Figure 7 shows how this technique can give 
significantly different results than standard regression. 
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Figure 7 – Prediction of Degradation Rates 
 
BENEFITS OF TEST RESULTS  

The test data made two essential contributions to the 
development of this prognostic model.  First, they provided a 
means by which to validate an analytical model of how 
performance parameters change as a function of compressor 
fouling.  Secondly, they gave insight into the sensitivity and 
statistical distributions of performance parameters as a 
function of load. Hence, having been developed and validated 
on real data, a large amount of knowledge is “built in” to the 
prognostic model. Along similar lines, the prognostic model 
may be developed for any particular gas turbine if data is made 
available on pre and post on-line waterwashing and crank 
washing. 
 
OPTIMIZING COMPRESSOR WASH INTERVALS 
 Referring back to the accelerated fouling test results of 
Figure 3, it is clear that on-line compressor washing was able 
to recover a majority of the compressor efficiency degradation. 
Initially, a large portion of these non-recoverable losses are 
recovered by crank washing but eventually a hot section 
overall will become necessary to regain performance (Figure 
8). 
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Figure 8 - Types of Degradation Rates 
 

Hence, the question shifts from if washing should be done 
to when it should be done from an optimal cost/benefit 
standpoint.  To perform this optimization, results from the 
engineering-based, compressor fouling prognostic model are 
combined with an economic-based analysis that accounts for 
the costs associated with efficiency degradation and 
performing compressor washing.  
 The compressor washing optimization algorithm developed 
predicts the optimal time to perform the wash based on the 
projected efficiency difference between performing the wash 
(action) to correct the degradation and continuing to run the 
gas turbine in its current condition (no action).  The 
compressor wash should occur at the point in the future when 
the benefits of performing it outweigh its costs. 
 In this process, the engineering projections are merged 
with the O&M economic information on compressor 
degradation consequential costs.  Factors such as reduced load, 
downtime, and other replacement “value” costs are all taken 
into account to quantify the decision to either not perform a 
type of wash (at the expense of increased degradation) or to 
perform the wash (but incurring a cost).  (Figure 9). 
 

 
 

Figure 9 - Optimal Time for Waterwashing 
 

The Net Present Value (NPV) is calculated into the future 
for a specified time period.  The NPV is a simple calculation 
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once consequential costs have been determined from the above 
factors.  When the costs and risks associated with keeping the 
gas turbine operating are thought of as “benefits” the NPV 
may be thought of as the following mathematical form: 
 
NPV = (Total Expected Cost Associated with 
Efficiency Degradation) - (Total Expected Cost 
of Recovering Losses) - (Costs of the 
Waterwash or Crankwash) 

(4) 

 
A simplified cost function version of this NPV calculation can 
be represented as follows:  
 
C(total) = (∆Fuel Flow * Fuel Cost/Amount of 
Fuel) – (Cost labor + Cost materials + 
PowerLost)Wash 

(5) 

 
In this formulation, a simple minimization problem exists.  

The prognostic model’s gas turbine degradation statistics, 
forecasting and the probabilistic analysis are used as inputs to 
the development of this cost minimizing procedure. Eq. (5) 
will produce a minimum when the costs of performing an 
online wash equals the amount of extra fuel being consumed 
due to degradation.  Figure 10 shows an actual trend in ∆% 
fuel flow for the K-17 test and the prediction of future 
degradation based on the double exponential regression and 
experience from previous fouling/waterwash/crankwash 
results.  The line in Figure 10 represents the point of the NPV 
curve beyond which costs outweigh benefits.   

 

 
Figure 10 – Wash Prediction 

 
Figure 11 illustrates how the cost function changes as a 

function of fouling severity at “Full” and “Standard” load 
levels or “bells”.  This shows that, on a relative basis, a 
waterwash at “Standard” load  need only be performed nearly 
½ as frequently than if the unit is always operated at “Full” 
load.  Lower load levels would warrant even less frequent 
washing.  The relative time used in Figure 11 is due to the fact 
that the actual fouling rate was accelerated.  It is assumed that 
6

the relative waterwash frequencies will be applicable to the 
actual operating times of a unit undergoing normal fouling 
rates.  Figure 11 also assumes that the costs associated with 
performing the online wash are fixed. This allows the costs 
associated with compressor fouling (i.e., excess fuel 
expenditures) to be the only variable costs within the 
algorithm. 
 

 
Figure 11 – Water Wash Frequency 

 
CONCLUSION  
 A method has been presented that assesses the compressor 
performance degradation of Naval gas turbines with standard 
instumentation and predicts the optimal time for washing 
processes based on a cost/benefit analysis.   The approach 
utilizes built-in knowledge from accelerated fouling tests for 
model validation and to predict future performance of an 
arbitrary unit in-service.   With continuous monitoring and 
cost/benefit analysis the Navy can make informed decisions 
about incorporating on-line waterwashing and altering 
crankwash intervals. 
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